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Abstract

In our paper we focus on studying the hexagonal structure of single bee cells as a mathemat-
ical modeling problem via interactive geometry software Cabri 3D and computer algebra system
Maple R©6. We derive the functions which describe the surface area for both mathematical mod-
els and determine extremes of the surface area functions using calculus. The extremes obtained
from the mathematical models are also contrasted with experimental data obtained by beekeeping
experts.

1 Introduction
The famous historical problem of honeycomb elegance and the geometry of a single bee cell as a solid
called rhombic dodecahedron has fascinated many mathematicians and scientists. The essence of the
problem has been explored from different perspectives, from the strictly scientific and philosophical
to the educational.
Hope-Jones [1] has written that: ,,This interesting solid has tended too much in the past to be classi-
fied as for adults only (and for not too many of them), but because it supplies the answer to a question
which every intelligent youngster asks himself I think it is worthwhile to try and smooth the path of
any teacher who wants to let children of (say) 13 share in some of its treasure.”
The topic is not original, but since antiquity the shape of a bee cell has resulted in many interesting
investigations like the great geometry problem of how to tesselate a space with convex congruent
polyhedra. In this paper, we show how technology facilitates modeling to make the mathematical
problem of the shape of a bee cell more accesible. With reference to [2], we derive functions de-
scribing the surface area for two models, which are based on a rhombic dodecahedron and a snub
octahedron. The use of calculus in finding the extrema of both functions will be necessary. One can
observe that a more complex model corresponds to a complicated expression of function, in which
finding a minimum requires using software with an implemented computer algebra system.
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1.1 The geometry of a bee cell: a short historical overview
As early as ancient times, the Egyptians admired the hexagonal honeycomb structure. Later on, it
was Pappus of Alexandria (ca. 300 A. D.) who was fascinated by this construction and attributed the
hexagonal tessellation to reasons of economy or saving. [3, 4] He saw the latent cause in the fact
that only three regular polygons tile the plane: an equilateral triangle, a square and a hexagon. The
hexagon encloses the largest area for the prescribed perimeter. [5] J. Kepler (1571-1630) assumed that
natural powers are responsible for the structure of forms in the universe. Kepler’s interest in Plato’s
atomic theory was transferred to his study of regular geometric structures on the growth of such things
as snowflakes, pomegranates, or honeycombs. He assumed that the regular patterns of these objects
could be explained by efficient packing of spheres arranged in a hexagonal lattice. Kepler predicted
that this sphere’s arrangements in cubes can expand into hexagonal structures so-called rhombic do-
decahedra and the hexagonal cross-section of a honeycomb can be considered such a consequence of
internal pressures in tight packing of wax tubes built by bees.[6] The famous French scientist Rèaumur
(1683-1757) contacted many mathematicians of his time with a request to expound a mathematical
solution to the problem. Explanations were given by two mathematicians - the German mathematician
J. S. Koenig (1712-1757) and, independently of him, the Croatian Jesuit R. J. Boscovich (1711-1787).
According to Rèaumur’s claim, Koenig gave the solution in which he supposed a pyramidal roof of
the bee cell. Boscovich found the errors in his logical thinking. By using calculus and methods of
descriptive geometry he gave two solutions in which he proved these facts - an existence of rhombi
in the cell’s bottom and the equality of the spatial angles between the faces. [5]. However, the math-
ematical nature of the problem appeared again in 1952, when the authors Hilbert and Cohn-Vossen
provided arguments for the hexagonal arrangement as the best one of greatest density. [7]
In [8], the author Thompson discusses the effects of pressure on cylindrical wax tubes. The pressure
applied to a tube stored in layers is a precondition to their hexagonal arrangement. From the mathe-
matical point of view, the hexagonal tessellation just like the bases of bee cells is not accidental. In
[9] is proved that among all polygons which tile the plane the regular hexagon has the largest isoperi-
metric quotient, that is, has the largest area for a given perimeter.
The regularity of bee cells was analysed in more detail by Fejes-Toth in [2]. The author concentrated
on honeycombs which can consist of standard bee cells or of new shapes of notional ones. The point
is that the single bee cell is not a hexagonal prism. The bottom of a standard bee cell is composed of
three copies of the congruent rhombi not lying in one plane, while the bottom of the hypothetical new
one consists of two rhombi and two hexagons.
In this paper we explore more general constructions based on those of Fejes-Toth and we will show,
using calculus, that the specific constructions found by Fejes-Toth are optimal.

2 The geometry of a bee cell
Suppose that bees need to build some type of container consisting of a lot of regular hexagonal prisms.
The container is built from wax, provided that only a minimum of amount of wax will be used. This
implies minimizing the ratio of the surface area to the volume of a single prism (the area of the bases
of the prism are not included in the calculation). Thus, it is the same as minimizing the perimeter of
the base of a single prism to its area. In [9] author has shown that even when irregular tessellating
polygons are considered, the regular hexagon is best. Now we validate a subset of the Niven result.
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If we consider only the regular n−gons, n ≥ 3, with perimeter Pn, area An inscribed in a unit circle,
than for the ratio it holds true that

Pn

An

=
2n. sin π

n
n
2
. sin 2π

n

= · · · = 2

cos π
n

.

The sequence
(

2
cos π

n

)∞
n=3

is decreasing. The plane can be tessellated by an equilateral triangle, a
square or a regular hexagon.
We will next consider a single bee cell. The cell’s base will be an open regular hexagon and we will
not take its area into consideration.
The rigorous view inside the real bee cells shows that a single real bee cell is not a hexagonal prism
with a planar bottom. The bottom is part of the rhombic dodecahedron and consists of three con-
gruent rhombi. These rhombi tessellate the specific zig-zagged surface. In Fig. 1 we demonstrate a
constitution of polyhedra which represent the top part of bee cells by using the software Cabri 3D.
Let A0B0C0D0E0F0 be any given regular hexagon in an original plane. The centre of the hexagon is
denoted S0. A line o, which is perpendicular to the original plane, and pass through the point S0, is
called axis o.

Figure 1: The formation of polyhedron which represents a single bee cell (Fig. 2a - d) and a consec-
utive composition of ten bee cells in honeycomb (Fig. 2e - f).
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In Fig. 2a, regular hexagon A0B0C0D0E0F0 represents a cross-section of a bee cell. The right
prism with height S0S1 and this hexagon as a base has been constructed. The rhombus S2F1A2B1 has
been constructed in a condition that the point S2 lies on line o and holds S1S2 = A1A2 (see Fig. 2b).
In Fig. 2c, the rhombi S2B1C2D1 and S2D1E2F1 has been similarly constructed. In Fig. 2d, the
polyhedron represents the top part of a bee cell with its top composed of three congruent rhombi. In
the case thatD1F1 =

√
2S2E2 the three rhombi form part of a rhombic dodedahedron. The polyhedra

in Fig. 2e represent the top part of seven cells. These also form the bottom of three cells, as illustrated
in Fig. 2f.

2.1 The mathematical model of a standard bee cell
The first observation by using Cabri 3D is related to the volume of a single bee cell. Let us consider
points S1 and A1 as perpendicular projections of the points S0 and A0 on the original plane. Holds
that S0S1 = x = A0A1.
The volumes of rectangular tetrahedrons B0F0A1A0 and B0F0S1S0 are equal (tetrahedrons have con-
gruent bases B0F0A1, B0F0S1 and the same height x). An analogical situation is in cases when we
consider two other pairs of tetrahedrons, e.g. B0D0C1C0, B0D0S1S0. The software Cabri 3D pro-
vides calculations of the volumes directly (see Fig. 2). Let’s evaluate the volume and surface area of a
single cell by using Cabri 3D software. We observe that by increasing the distance x, the value of the
surface area is changed. We also explore that for the specific distance x, the value of the area surface
is a minimum.

Figure 2: The mathematical model of a single bee cell by using Cabri 3D. The volume of the cell is
independent of x.

Remark 1 We use Cabri 3D tools (Manipulation, Area, Volume and Calculator) to evaluate the sur-
face area and the volume of the model. The displayed value of the surface area corresponds to
the values of e, h. We recall that we deal with an open cell, that is, the area of its hexagonal cap
A2B2C2D2E2F2 is not counted.

The extreme value for the surface area is connected with one of the internal angles of the rhombus
at approximately 109◦. To determine the exact values for the extreme, we derive the function p (x)
of the surface area of the model cell with a variable x and parameters e = A2B2, h = F0F2 (label
e means edge; h means height). The rhombus A0B0S0F0 has diagonals A0S0, B0F0. The diagonal
B0F0 is diagonal in the hexagon A1B0C1D0E1F0 in the original plane.
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Figure 3: Evaluation of the surface area of a bee cell, lengths of edgesA2B2 , F0F2, distance x = S0S1

and one of an internal angle of congruent rhombi.

Using the law of cosines for the sides of the triangle F0B0A1 we calculate that B0F0 = e
√
3. It

is evident that the segment A1S1 has a length of e. If we label P a midpoint of A1S1, then from the
Pythagorean Theorem we derive

A0P =

√
4x2 + e2

2
(1)

that implies
A0S0 =

√
4x2 + e2. (2)

The area of the rhombus A0B0S0F0 is

Ar =

√
3

2
e
√
4x2 + e2. (3)

The area of the trapezoid A2B2B0A0 is

At = eh− 1

2
xe =

e

2
(2h− x) . (4)

The surface of the model cell is comprised of three rhombi and six trapezoids. The exact expression
of the function p (x) is

p (x) = 3e

(√
3 (4x2 + e2)

2
+ 2h− x

)
. (5)
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We will use the first-derivative test and it holds true that

p′ (x) = 3e

(
2
√
3x√

4x2 + e2
− 1

)
. (6)

Setting p′ (x) = 0 and solving for x > 0, we easily find

x0 = e

√
2

4
. (7)

The second-derivative test tells us that for all real x it holds true that

p′′ (x) = 3e

(
2
√
3.
√
4x2 + e2 − 2

√
3x. 8x

2
√
4x2+e2(√

4x2 + e2
)2

)

p′′ (x) =
6
√
3e3(√

4x2 + e2
)3 > 0 (8)

The function (5) has a local minimum at x0 = e
√
2
4

. The parameter h has no impact on the critical
number (7). On the other hand, the length of the edge e does not affect the internal angles in the model
because two similar shapes have congruent corresponding angles. Let us calculate the internal angles
in the rhombus A0B0S0F0 .
First we evaluate the length of the diagonal A0S0 . Substituting x = e

√
2
4

in (2) we obtain

A0S0 = e

√
3

2
. (9)

Now, in the triangle A0B0P we use the tangent function for ϕ = ∠B0A0F0 and it holds true that

tan
ϕ

2
=
PB0

PA0

. (10)

Substituting PB0 = e
√
3
2

and PA0 =
e
2

√
3
2
, we find

tan
ϕ

2
=

√
2. (11)

This implies that
ϕ
.
= 109.47◦ (12)

and for ψ = ∠A0B0S0 we evaluate

ψ = 180◦ − ϕ = 70.53◦. (13)

The angle ∠B0A0A2 = ω in the trapezoid B0A0A2B2 is an adjacent angle in the triangle A0B0A1 at
a vertex A0 and it holds true that

tan (180◦ − ω) =
A1B0

A1A0

. (14)

Substituting A1B0 = e and A1A0 = x = e
√
2
4

, we find

ω
.
= 109.47◦. (15)

From (12) and (15), it is evident that the planar angles at vertices A0, C0, E0, are equal. This implies
that the three rhombi form a part of rhombic dodecahedron.
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2.2 The second model of the bee cell
Obviously, the results described above are incredible; among all open cells of constant volume which
can be based on the hexagonal honeycomb structure we can find the surface with the least area. [4]
In the paper [2] the author describes a special construction of such polyhedron. The idea of the con-
struction is based on the truncations of the corners of irregular octahedron. The final parallelohedron
is illustrated in Fig. 4

Figure 4: The Fejes-Toth construction of the irregular truncated octahedron. The indicated cross-
section A2B2C2D2E2F2 is regular hexagon. Its center is a point of symmetry of this polyhedron. The
polyhedron consists from two squares, eight irregular hexagons and four rhombi. In accordance with
Fejes-Toth’s construction holds true that B0C0Q0P0 is square, too. In notation A2B2 = s holds true
that MP0 =

√
5
4
s, MN =

√
3
2
s and A0P0 =

√
2
2
s.

Fejes-Toth proved that in a condition of the congruent hexagonal cross-section of the polyhedra
and their equal volumes the cell arising from the truncated octahedron has a smaller surface-area than
the cell based on the rhombic dodecahedron. In his article with the exciting title What the Bees Know
and What They Do Not Know, the author writes that: ,,Instead of closing the bottom of a cell by three
rhombi, as the bees do, it is always more efficient to use two hexagons and two rhombi”.
Next we will investigate a mathematical model of the shape based on a snub octahedron. Using
calculus, we will find the extrema of the surface-area function of the cell.
First, we construct the model by using Cabri 3D software.
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Figure 5: The sequence of smaller figures which give stages in construction of the single bottom.

IfA1B1C1D1E1F1 is the fundamental hexagon in the original plane, then only midpointsM,N,U,W
of the sides A1F1, A1B1, C1D1, D1E1 are incident to the original plane. If we put our attention
on a single cell whose fundamental hexagon A1B1C1D1E1F1 is incident to the original plane, then
the bottom is folded up from two rhombi A0NP0M,D0UWQ0 and two hexagons B0C0UQ0P0N ,
F0MP0Q0WE0 .
It is evident that the model and the hexagonal prism have equal volumes. If points P1, Q1 are per-
pendicular projections of the points P0, Q0 onto the original plane, then tetrahedrons MNA1A0,
MNP1P0 are congruent. Oblique triangular prisms NUC0B0B1C1, NUQ0P0P1Q1 are congruent,
too. The particular situation is demonstrated in Fig. 6
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Figure 6: Demonstration of equal volumes for the hexagonal prism and the model of the cell.

Let us evaluate a surface area of the model by using Cabri 3D software. We observe that with an
increasing distance x the area of the surface is changed and for the specific distance x (see Fig. 7).

Figure 7: Evaluation of the surface area of the model with respect to the parameters e, h (calculated
with Cabri 3D).
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We derive the function q (x) with an variable x, which will determine the surface area of the
model.

Figure 8: The geometric details of the model. It also holds true that the points P1, Q1 are midpoints
of the segments A1S1, S1D1.

Using the law of cosines for the sides of the triangle F1B1A1 we obtain

F1B1 = e
√
3 (16)

this implies

MN = e

√
3

2
. (17)

If V is a midpoint MN , then we determine the length of A1V by using a tangent function in right-
angled triangle A1NV . Holds

tan 60◦ =
MN
2

A1V
. (18)

This implies that
A1V =

e

4
. (19)

Using the Pythagorean Theorem in the triangle A0V A1, we derive

A0V =

√
16x2 + e2

4
(20)

and it holds true that

A0P0 =

√
16x2 + e2

2
. (21)

The area of the rhombus A0NP0M is

Ar = e

√
3

8

√
16x2 + e2. (22)

Now, we derive a formula for the area of the hexagon B0C0UQ0P0N . The segment P1N is midline
segment in the triangle A1B1F1 and it holds true that

P1N =
e

2
(23)
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From the rectangular triangle P0NP1 we derive

P0N =

√
4x2 + e2

2
. (24)

The segment NU is a midline segment in the trapezoid A1D1C1B1 and holds true that

NU =
A1D1 +B1C1

2
=

3

2
e. (25)

If we consider a point Z, the intersection between F1B1 and NU , then the segment P0Z is an altitude
to the trapezoid NP0Q0U and holds true that P1Z = F1B1

4
. From Pythagoras Theorem on triangle

P0P1Z implies that

P0Z =

√
16x2 + 3e2

4
. (26)

The area of the hexagon B0C0UQ0P0N is

Ah = 2
P0Q0 +NU

2
· P0Z, (27)

Ah = e
5
√
16x2 + 3e2

8
. (28)

Now, we derive formulas for the surface area of the lateral faces of the model.
The area of the pentagon A2B2B0NA0 is

Ap = h.e− 2 · e.x
4

= h.e− e.x

2
. (29)

The area of the rectangle B2C2C0B0 is

Are = e (h− x) . (30)

Finally, for the surface area of the model (without the hexagonal base) it holds true that

q (x) = 2 · Ar + 2 · Ah + 4 · Ap + 2 · Are (31)

and we obtain

q (x) = 2 · e
√
3

8

√
16x2 + e2 + 2 · e5

√
16x2 + 3e2

8
+ 4 ·

(
h.e− e.x

2

)
+ 2 · e (h− x) . (32)

After simplification

q (x) = 2 · e

(√
48x2 + 3e2 + 5

√
16x2 + 3e2

8
+ 3h− 2x

)
, (33)

where e = A2B2, h = F1F2 are parameters.
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How can we find an extreme?
If we use the first-derivative test and put q′ (x) = 0 for x > 0, then we derive an algebraic equation
involving surds. This equation requires special consideration because it is in eight degree after a
simplification.
In this situation we help ourselves with a computer algebra system included in Maple R©6 software. Its
application is presented in Fig. 9.

Figure 9: Calculation via a computer algebra system included in Maple R©6.

We use the commands eqn:= diff(q(x),x)=0; solve(eqn, x); and evalf(%). We observe that the
solution contains eight roots, six of them are complex numbers and two are real.
The real roots are

x1,2
.
= ±0.2792e (34)

The second-derivative test is also performed through the software environment Maple R©6. We call it
through command diff(q(x), x$2). We obtain

q′′(x) = 2e

 −64
√
3x2√

(16x2 + e2)3
+

4
√
3√

16x2 + e2
− 160x2√

(16x2 + 3e2)3
+

10√
16x2 + 3e2

 . (35)

Calling the command simplify(diff(q(x), x$2)) we get an expression which can be simplified manually
into a more convenient form

q′′ (x) = e3
√
3 (32x2 + 6e2)

√
16x2 + 3e2 + (240x2 + 15e2)

√
16x2 + e2√

(16x2 + e2)3.(16x2 + 3e2)3
. (36)

The function q′′ (x) is positive for all real x. This implies that the function q (x) has for x0
.
=

±0.2792e minimum.
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The internal angle ∠MA0N = ϕ is calculated from a tangent function in the right - angled triangle
A0NV . It holds true that

tan
ϕ

2
=

MN
2

A0P0

2

. (37)

Using (17) and (21), substituting x1 = 0.2792e, we evaluate

ϕ
.
= 98.25◦. (38)

With reference to Fig.4 we evaluate the corresponding angle ∠MA0N in the truncated octahedron.
Holds true that

tan
ψ

2
=

MN
2

A0P0

2

=

√
3
2
s

√
2
2
s
=

√
3

2
.
= 1.2247 (39)

From this implies that ψ .
= 101.53◦ and the model in Fig. 4 does not represent an optimal formation.

As we mentioned above, in [2] proved that the surface-area of the model which arised by truncated
octahedron is smaller than surface-area of the cell based on rhombic dodecahedron. Now, it would
be interesting to compare the surface-areas of the cells which shapes are related to the extrema of the
functions p (x) and q (x).
First, we compare the values of the functions. Using (7) and (34) we evaluate p (x0) and q (x1). By
simplification

p (x0) =
3
√
2

2
e+ 6h · e. (40)

If in (34) for x1 we substitute x1 = k.e, k = 0.2792, then for holds true that

q (x1) =
e2

4
·
(√

48k2 + 3 + 5.
√
16k2 + 3

)
− 4k · e2 + 6h · e. (41)

From (40) and (41) implies that

q (x1) = e2 ·

(√
48k2 + 3 + 5

√
16k2 + 3− 6

√
2

4

)
− 4k · e2 + p (x0)

...
q (x1)

.
= e2 · (1.1039− 1.1168) + p (x0) (42)

and holds true that q (x1) < p (x0). One can see that the values e, h are not relevant in testing the
models. In this extremal case the second model of the cell is the better-shaped open hexagonal struc-
ture with smaller surface-area then the first one. It is in conformity with the results in [2].

Using Maple R©6 we plots the graphs of the functions p (x) and q (x) in Fig. 10.
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Figure 10: The graphs of functions p (x) and q (x) for arbitrary chosen parameters e = 2.7 and
h = 4.7.

The visual juxtaposition can be provided by the usage of Cabri 3D.

Figure 11: The parameters e, h are equal for these models. The values of x can be setting indepen-
dently of each other and have a great influence on the calculations. One can observe that the extrema
are dependent on the value of the angles. We note that the surface areas are calculated without the
areas of hexagonal bases.

As we showed above, the function q (x) describing the surface-area of this model. In the Fig. 11 is
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showed that the percentage difference in surface-area between the cell modeled with the bottom like
the part of the rhombic dodecahedron and the modeled cell as the open hexagonal prism is 3.65%.
The percentage difference between the cell modeled with the bottom like truncated octahedron and
modeled cell as the open hexagonal prism is 3.75%. The percentage difference between the cell
modeled with the bottom like the part of the rhombic dodecahedron and modeled cell with the bottom
like truncated octahedron is 0.11%.

3 Conclusion - a note to real experimental data
There are about 30 subspecies and many more hybrids of bees in the world and their parameters e, h
are different, e.g. in [19] there is a specified range e .

= 2.82mm −2.94mm. We have already men-
tioned above that the values e, h are not relevant in testing the model. What is critical is the internal
angle of the rhombus and, indeed, the experimental value of the internal angle of rhombus is approx-
imately 109◦. It means that the mathematical model whose surface-area is described by the function
p (x) is in accordance with the natural design of the bee cell.
The second model whose surface-area is described by the function q (x) was discovered by the famous
mathematician Laszlo Fejes-Toth. In his article he solved the difficult problem of how to tessellate
the space between two planes with convex congruent polyhedra satisfying two conditions while min-
imizing the surface area with regard to the occupied volume. [2]
Due to complexity of the function q (x), we used software to determine its extreme. In Fig. 12, one
can see some cells which have their bottoms built from hexagons and rhombi. For these cells, it is
typical to have a clearly visible segment at the bottom instead of a single point. The existence of such
a type is unusual and also contrary to Fejes-Toth, who claims the bees use the three rhombi model
consistently.

Figure 12: Photograph of a natural honeycomb with special bottom cells. As the arrows indicate,
some bottoms are built from hexagons and rhombi.

It is true that mathematical models are ideals and the real bee cell is a crude approximation of a
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pure geometric shape. A lot of beekeeping experts consider that the bees build cylindrical cells from
wax first. Later, they heat the wax and the surface tension remoulds these shapes into an appropriate
optimal design. This could be the reason why one can find both types of the models on the edge of
the natural honeycombs. However, these assumptions should be supported by serious research. We
are not aware that such research has been realized yet. Therefore it is not possible to compare mathe-
matically derived results with practice.
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